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Abstract 

The nature of the four-dimensional crystallographic 
symmetry operations is clarified by representation of 
their effects in hyperstereograms presented in the 
form of stereo-pairs. Appropriate graphical symbols 
have been devised to indicate the orientations of the 
corresponding symmetry elements. Typographical 
symbols have been devised for the operations them- 
selves, and for their symmetry elements, which are 
adaptable for use in a system of symbolic nomen- 
clature of the four-dimensional classes following the 
general principles of the Hermann-Mauguin 
notation. 

Introduction 

Paper I of this series (Whittaker, 1983) reviewed the 
general nature of the four-dimensional symmetry 
operations, and the classification of their symmetry 
elements into mirror hyperplanes, rotation planes, 
rotation-inversion axes, and point symmetry ele- 
ments. It also presented hyperstereograms and Her- 
mann-Mauguin-style symbols for the sixteen crystal 
classes (belonging to the first six crystal systems) that 
contain symmetry operations of order not greater than 
two. Preparation of hyperstereograms of all the 227 
geometric crystal classes of four dimensions has now 
been completed, and these will be published else- 
where (Whittaker, 1984). It is the purpose of the 
present paper to elucidate further, by means of hyper- 
stereograms, the nature of the symmetry operations 
of order greater than two, and to show how their 
symmetry elements may be represented symbolically. 
The representation of a mirror hyperplane in a general 
orientation (which did not occur in the 16 classes in 
paper I) is also illustrated. 

It is helpful to distinguish a symmetry operation 
(which can be equated to its matrix representation) 
from the corresponding symmetry element by the use 
of bold type. Thus m is a reflection operation and m 
is (in four dimensions) a mirror hyperplane. 

In the hyperstereograms in this paper the positions 
of orthogonal axes have been indicated (except in 
Fig. 16). These are not intended as the crystallo- 
graphic axes of any particular crystal systems, and 
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are included solely for ease of reference. In Fig. 16 
the discussion is simplified by the use of non- 
orthogonal axes, which are in fact those appropriate 
to system 27 (the decagonal) of Brown, Billow, 
Neubtiser, Wondratscheck & Zassenhaus (1978). 

Mirror hyperplanes 

It has been shown previously (Whittaker, 1973a) that 
mirror hyperplanes are represented in the hyper- 
stereogram by the primitive itself, by a diametral 
plane, or by a spherical cap that intersects the primi- 
tive in a great circle. The first two kinds of representa- 
tion occur, and their mode of operation has been 
discussed, in paper I: on the primitive in class No. 3 
(2/01, class m), and on all three axial planes in No. 14 
(6/01, class mmm). To represent a spherical cap two 
dotted circles lying on the cap are used as in Fig. 1, 
in which the cap intersects the primitive on the 
equator wx. To construct the reflection of a given 
point in such a cap one considers a central plane of 
the hyperstereogram through the point and perpen- 
dicular to the great circle in which the cap intersects 
the primitive. One can then treat this section as an 
ordinary stereogram. Its intersection with the cap 
behaves exactly as if it were the representation of a 
mirror plane in such a stereogram. 

Rotation planes 

Rotation planes, like mirror hyperplanes, are rep- 
resented in the hyperstereogram in three forms, by a 
great circle of the primitive, by a diameter of the 
primitive, and by a circular arc joining the ends of 
such a diameter. The line representing a rotation plane 
is a full line which is labelled with a 3, 4 or 6 to show 
its order, or left unlabelled if it is of order two. 

If the rotation plane contains the z axis then it is 
represented by a diameter of the primitive* and its 
effect in the hyperstereogram is to produce an 
ordinary rotation about this line. This was illustrated 
in paper I (for example No. 12, 5/01, class 22) for 

* This assumes the convention always adopted here that the 
projection is made to project the z axis to the centre of the hyper- 
stereogram. 
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the case of twofold rotations, and its extension to 
higher orders is trivial and is not illustrated further 
here. 

If the rotation plane is orthogonal to the z axis, 
then it is represented by a great circle of the primitive, 
and its effect is to produce a kind of toroidal rotation 
round this great circle (Whittaker, 1973 a). To consider 
the representation of the effect on any particular 
point, a central section of the hyperstereogram is 
taken through the point, perpendicular to the great 
circle. This section is then exactly equivalent to an 
ordinary stereogram having a rotation axis represen- 
ted at a point on the primitive. A twofold plane was 
exemplified in this situation in paper I, No. 6, 3/01, 
class 2. One is familiar with ordinary stereograms 
having twofold and fourfold axes represented on the 
primitive, but threefold and sixfold axes are less 
familiar in this situation. Fig. 2(a) shows a fourfold 
plane represented by the equator. Fig. 2(b) shows a 
sixfold plane in the same way, and its effect may be 
understood by comparison with that of the fourfold 
plane. Successive 6 operations transform the point 
marked A to the points B, C, D, E and F. A threefold 
plane is not illustrated, but its effect is easily under- 
stood as generating only alternate ones of the six 
points in Fig. 2(b), for example A, C and E. 

A sixfold plane in a general position is shown in 
Fig. 3. The points are repeated round a circle on a 
plane orthogonal to the arc, the centre of the circle 
being somewhat outside the arc. As the plane contain- 
ing the points is not a central section of the hyper- 
stereogram the construction cannot so easily be 
related to an ordinary stereogram, but its nature can 
be seen to be intermediate between the cases when 
the rotation plane is represented by a diameter and 
a great circle. Rotation planes of other orders are 
entirely analogous. However, two new features arise 
in this case. 

(i) If a point is sufficiently distant from the rotation 
plane some of its repetitions may lie outside the 
primitive, and when these are replotted as negative 
points inside they will spoil somewhat the circular 
arrangement of points. This problem occurs equally 
in ordinary stereograms that contain rotation axes 
not at z and not on the primitive. 

(ii) The full line only represents half of the rotation 
plane, the other half lying outside the primitive. This 
is replotted as a negative (broken) arc inside the 
primitive, and this negative half will rotate any nega- 
tive points in the hyperstereogram in exactly the same 
way as the positive half rotates positive points. Posi- 
tive points are not rotated round the negative half 
nor are negative points rotated round the positive half. 

is necessary to show the orientation of the component 
rotation plane as well as the point representing the 
direction of the rotation-inversion axis. The former 
is symbolized by a chain line instead of a full line, 
and the latter by means of the conventional symbols 
A, I-1, © threaded on the line and with their own 
plane orthogonal to it. An example of a ~, axis is 
shown in Fig. 4. If the four symmetry-related points 
are close to the axis the ~, symmetry is very obvious; 
if they are somewhat distant from it, it is necessary 
to remember that they move outward from the virtual 
4 plane on spherical caps so that the further they are 
from the a, axis in Fig. 4 the closer they are to the xyz 
plane. 

Fig. 5 shows an example of a 3 axis, and it is clear 
from this that the 3 axis is equivalent to a combination 
of an explicit T axis and an explicit 3 plane (cf. the 

operation in three dimensions). It is therefore 
usually more convenient to show the component rota- 
tion plane by a full line. Similarly, a 6 axis (Fig. 6) 
is equivalent to a combination of a 3 plane and a 
perpendicular m hyperplane, and again it is usually 
more informative to indicate it by means of a full line 
(marked 3) than a chain line (marked 6). 

Point symmetry elements 

Double rotations involving a 2 plane 

Reasons were given in paper I for using unitary 
symbols for these operations, namely 1, 3, 4 and 

for 22, 62, 42 and 32 respectively. The nature of 
was illustrated by the hyperstereogram of No. 2, 1/02, 

D 

class 1, and it was pointed out that it is not possible 
to locate any geometrical symbol for point symmetry 
elements in the hyperstereogram. In what follows 
their presence is indicated where necessary by a sym- 
bol below the hyperstereogram. For the symmetry 
element 1 the symbol used i s l  itself. 

Fig. 7 illustrates 3, 4 and 6. It will be seen (and 
may of course be verified by matrix algebra) that a 3 
point involves an explicit 3 plane combined with a 1 
point, and it is most informative to symbolize it in 
this way. 4 does not involve an explicit rotation plane 
or a I point, and its component virtual 4 plane is 
therefore shown by a chain line. It is distinguished 
from 7~ by the absence of any symbol threaded on it. 
6 is shown similarly in Fig. 7(c), though it may also 
be shown by an explicit 3 plane together with an 
explicit orthogonal 2 plane (in this case on yz) corres- 
ponding to its formulation as a double rotation 32, 
and it is easiest to understand the operation in these 
terms. 

Axes of rotation-inversion 

The representation of T axes was discussed and illus- 
trated in paper I. In the case of higher-order axes it 

Double rotations of  equal orders 

Fig. 8 shows the effect of a particular example of 
what has hitherto been called the double rotation 44. 
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It can be understood as the combined operation of 
a 90 ° rotation about wx with a 90 ° rotation about yz, 
and its matrix representation can be factorized into 
the matrices of these two 4 operations as 0 !) 0 ] 0 0 '1 0 0 0 

1 0 0 0 1 0 0 1 0 0 

0 0 0 0 0 0 1 0 0 1 

o o i o o i o o o o 

It would be inappropriate, however, to label wx and 
yz as constituent virtual 4 planes because they have 
no unique status. The matrix can in fact be factorized 
into the product of the 4 operation 

1 - c o s  p c o s  q 

l + c o s  p c o s  q 
½ 

I s i n p  . 
|+cos p sm q 
~ s i n  p . 
\ - c o s  p s m  q 

s i n  p . s i n  p . \ 
- 1  - c o s  p c o s  q - c o s p  s m  q + c o s  p s m  q 

it 
- s i n  p . s i n p  . 

I c o s p c o s q  - c o s p s m q  - c o s p s m q  

- s i n p  
+ c o s  p c o s  q - 1 - c o s  p c o s  q 1 - c o s  p c o s  

- s i n  p 
- c o s  p c o s  q - 1  + c o s  p c o s  q - I  - c o s  p c o s  

and an orthogonal 4 operation, where p and q are 
freely variable parameters. Thus there are no uniquely 
identifiable 4 components in the double rotation, 
which strongly reinforces the desirability of a unitary 
symbol. The symbol IV is therefore adopted for this 
purpose. Since the orientation of a plane in four 
dimensions requires four parameters for its specifica- 
tion, and two of these (which can be identified as p 
and q in the above matrix) have no effect on the 
resultant IV operation, the latter has an orientation 
requiring two parameters to specify it. The 
geometrical symbol shown at the bottom left of Fig. 
8 uses the square to symbolize the fourfold character. 
If the centre of the square is taken as the position of 
the z axis in a small-scale hyperstereogram, then a 
line joins this to the point to which the z axis is 
transformed by the IV operation concerned. In Fig. 
8 this is the y axis. A convention has to be adopted 
that it is always shown as a direction with a positive 
or zero y component. This is always possible, since 
if a given IV operation transforms z to 37, one rep- 
resents the corresponding IV 3 operation which trans- 
forms z to y. Thus the orientation of the line represents 
the two orientation parameters of the IV operation. 
In addition, it is necessary to specify the relative hand 
of the two component virtual 4 operations. This is 
done by an arrow outwards from z if the IV operation 
transforms an axis orthogonal to the line by a 90 ° 
rotation corresponding to a right-handed outward 
screw from z along the line. An inward pointing arrow 
indicates that the rotation is left-handed. The orienta- 
tion of the symbol and the arrow then provides 
sufficient information to define the matrix of the IV 
operation. 

It becomes relevant at this stage to discuss a ques- 
tion of nomenclature. The definition of a symmetry 
element is the geometrical locus of points that are 

invariant under the symmetry operation M. When the 
symmetry element is a plane its orientation and order 
label (n) define the whole group of symmetry oper- 
ations M, M 2. .. M". The same is true for an m hyper- 
plane and for an axis of rotation-inversion, and the 
term symmetry element is commonly used both in the 
strictly geometrical sense and also in this derivative 
sense. With the introduction of a graphical symbol 
for the order and orientational characteristics of the 
IV operation it becomes possible to extend this usage 
to the 'IV symmetry element'. Although geometrically 
this is only the point (0, 0, 0, 0), its association with 
the orientational symbol makes this convenient usage 
meaningful, and it will become equally applicable to 
the other point symmetry elements in the following 
discussion. 

In Fig. 8 successive applications of the specified 
IV operation transform the point marked A to B, C, 
and D. It is evident fro_m the relationship of A to C 
and B to D that IV 2=1. 

Entirely similar considerations apply to the double 
rotation 33. It is therefore denoted Ill, and its effect 
and appropriate graphical symbols are shown in Fig. 
9. The double rotation 66 is equivalent to a combina- 
tion of exl21icit Ill and ~ operations, and it is therefore 
denoted Ill  and symbolized by the III and ~ symbo=ls 
in Fig. 10, in which successive applications of the IIl 
operation transform the point marked A to the points 
B, C,/9, E and F. It may be observed that the points 
A, E, C are identical with points A, B, C (resp_ectively) 
of Fig. 9, corresponding to the relationship III 4 = Ill. 
Also, it is evident from the relationships of points A 
to D, B to E and C to F that III 3= | .  

Double rotations of unequal orders (greater than two) 

The double rotation 63 may be factorized as 

63 = 6.3 -- 2.3.3 -- 2.111. 

In the third of these forms the symmetry element of 
the 2 operation and the first 3 operation are a 2 plane 
and a coincident 3 plane. However, because of the 
two free parameters involved in the Ill operation 
(similar to p and q in the previous section) the Ill 
may be re-factorized to give component 3 operations, 
neither of which has its symmetry element coincident 
with the 2 plane. Thus, the '63' operation can be 
derived from certain combinations of a 2 and two 3 
operations that do not include any 6 operation. It is 
most appropriately designated VI, and symbolized 
graphically as in Fig. I I by a combination of the 
appropriate III symbol and 2 plane which correspond 
to VI 4 and V I  a in the required orientation. The 
relationship VI 4=II I  may be recognized from the 
identity of the points A, E, C in Fig. I I with the 
points A, B, C of Fig. 9, while the relationship V l  3 - -  2 
is obvious from the pairs of points AD, BE and CF. 
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The double rotation 34, which is a twelvefold 
operation, is denoted Xll as an extension o f  the 
nomenclature. It has the properties XI13=43 and 
Xll 4= 3 and these rotation operations have the same 
4-plane and 3-plane symmetry elements as the oper- 
ations that are combined to give XII. It is accordingly 
indicated fully by the represe~ tation of these two 
rotation planes as full lines, a; shown in Fig. 12. 
Successive applications of the Xll operations lead to 
the sequence A, B, C , . . . ,  L, while applications of 
the constituent 3 and 4 operations move along the 
series by four steps and nine steps at a time, respec- 
tively. 

The double rotation 64 may be expressed as 

6 4  = 2 . 3 . 2 . 4 3  = 2 2 . 3 4 3  = ~ . X l l  7. 

It is therefore denoted by X~I. It has the properties 
X~13=~3 and Xil  4= 3, and is therefore represented 
as in Fig. 13. Again the individual 3 and 4 transform 
the points in such a way as to move four steps and 
nine steps, respectively, along the alphabetic 
sequence. 

Multiple rotations 

Of the two symmetry operations in this category 
the easier one to deal with is 3344. It is another 
twelvefold operation, and for lack of a better symbol 
is denoted XII'. It has the properties X I I  ' 3 =  IV  3 and 
XII '4= III and these are the component double rota- 
tions from which it is constructed. It is therefore 
represented by symbols for both of them, as in Fig. 
14. In the particular example illustrated the IV and 
III symbols are at right angles to one another to make 
it easier to follow their effects, but they could in fact 
be at any angle. The effect of the component IV 
operation may be followed by moving nine steps at 
a time along the alphabetical cycle: A, J, G, D corres- 
pond to A, B, C, D, respectively, in Fig. 8. The 
sequence A, E, I generated by successive applications 
of the III operation is more difficult to compare with 
Fig. 9 because of its different orientation and opposite 
hand. 

The triple rotation 444 presents more difficulties. 
It is eightfold, and if it is denoted VIII it has the 
properties VIII2= IV and VIII 4= 1. The three com- 
ponent 4 operations are not all related to one another 
in the same way. Two of them form an orthogonal 
pair that generate a IV operation, but the third is 
necessarily nonorthogonal to either of them, though 
it has to be in a specific orientation relative to this 
IV operation. Thus one can factorize VIII as 4.IV, 
but these factors are not unique; that is, differently 
oriented IV operations can be combined with 
appropriate 4 operations to generate one and the same 
VIII. Moreover, the IV operation that is the square 
of VIII cannot be employed in generating it. There 
is thus no possibility of using the symbols of the 

components as has been done for Vl, XIl, X~l and 
XlI'. The graphical symbol adopted is shown (for a 
particular orientation) in Fig. 15. Since the eight 
powers of VIII form a group, one may without loss 
of generality choose any of the odd powers as the 
fundamental one. There are two of these odd powers 
whose squares transform z to a possible orthogonal 
axis and satisfy the convention adopted for deriving 
the symbol of a IV operation, and the symbol of this 
is used as a basis. Two lines are added to this symbol 
to show the two successive VIII transformations that 
lead to the symbolized IV operation. 

In order that the VIII symbol should uniquely 
define the matrix of the VIII operation involved it is 
necessary to specify a further convention. In crystal 
systems 26 and 32 the VIII operation (when present) 
relates the eight + w, +x, +y, +z crystallographic axes. 
For the purpose of constructing the symbol the funda- 
mental member of the group formed by the powers 
of VIII must be taken as that one of the two already 
chosen which transforms z to a positive axial direc- 
tion. In Fig. 15 this is x, and for the sake of simplicity 
is shown as orthogonal to z, although this condition 
is not imposed by the Vll l  operation and does not 
exist in system 26. In system 33 VIII operations occur 
which lead to transformations such as z ~ [ 1111 ] ~ y, 
and in this case a different convention would be 
necessary that would lead to an acute angle between 
the initial line and the direction of the IV symbol. 
However, symbols for VIII symmetry elements are in 
fact never needed in system 33 because the VIII 
operations always arise implicitly from combinations 
of simpler symmetry operations. 

In Fig. 15 it may readily be observed that the 
sequence of points A, C, E, G is identical with A, B, 
C,~D of Fig. 8, corresponding to the relationship 
V l ] ' l  2 = IV. 

The fivefold and tenfold operations 

It has previously been shown that the fivefold oper- 
ation (denoted V to distinguish it from a non-crys- 
tallographic fivefold rotation) can be regarded as a 
combination of a 4 operation with an m operation in 
a particular relationship to one another (Whittaker, 
1973b). However, this is not very helpful in visualising 
its effect. The operation has the property that there 
exist five directions in four-dimensional space (rep- 
resented by five points in the hyperstereogram of 
which no set of four are coplanar) which are transfor- 
med cyclically into one another. Four of these direc- 
tions may be chosen as (non-orthogonal) axes, and 
the fifth is then the direction [1111]. It is always 
possible to choose as fundamental that member of 
the group constituted by the five powers of V which 
transforms z to y. The projections of the axes w, x, y 
and [1111] surround the projection of z tetrahedrally 
(the tetrahedron may be regular or may have two 
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unequal sets of three equal edges) and the route taken 
by z through y and then via one of the six possible 
permutations of w, x, [ 1111 ] back to z can be depic.ted 
by joining up these points in the appropriate order. 
An example is shown in Fig. 16(a). In some crystal 
classes all six V operations are present together and 
the symbol then takes the form of a complete tetrahe- 
dron with all four vertices joined to its centre. 

In Fig. 16(a) the points repeated by the symmetry 
have been chosen to lie close to the axes so that one 
can see the relationship between their pattern of repe- 
tition and that of the axes. It is to be noted that 
whereas the six different versions of the V operation 
that correspond to a particular set of axes simply 
cycle the axes in different orders but into the same 
places, they cycle an off-axis point to different points 
in the vicinity of the other axes. 

The effect of the tenfold operation is illustrated in 
Fig. 16(b). It may be seen that it is equivalent to Fig. 
16(a) but with every point accompanied by an 
opposite point of opposite_sign. Thus the tenfold 
operation is equivalent to V.1. It is therefore denoted 
V and is represented by the V and 1 graphical symbols. 
The relationship 9 z = V z is demonstrated by the iden- 
tity of the points A, C, E, G, I in Fig. 16(b) with the 
points A, C, E, B, D, respectively, of Fig. 16(a), and 
the relationship ,~5= ~ is evident from the pairs of 
points AF, BG, CH, DI  and EJ. 

C o n c l u s i o n s  

The nature and orientational dependence of the four- 
dimensional crystallographic symmetry operations 
have been clarified by representing their effects by 
means of the hyperstereogram. Unitary symbols have 
been devised for all the double and multiple rotation 
operations, and the correspondences between the old 
and new symbols are summarized as follows: 

22, 62, 42 and 32 become 1, 3, 4 and ~, respectively; 
33, 66 and 44 become Ill, I~I and IV, respectively; 
36, 34 and 64 become VI, XII and X~I, respectively; 
,!.4,!. and 3344 become VIII and XII', respectively. 

The operations previously denoted V and X (Whit- 
taker, 1973 b) become V and V. This clarification, and 
the availability of a suitable notation, are necessary 
pre-requisites for the development of a Hermann-  
Mauguin type of nomenclature for the crystal classes, 
and this will form the subject of paper III of this 
series. A sufficient set of graphical symbols has also 
been derived to denote all types of symmetry elements 
and their orientations on hyperstereograms, and this 
is a necessary pre-requisite for the preparation of an 
atlas of hyperstereograms of the 227 crystal classes, 
to be published elsewhere (Whittaker, 1984). 
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Abstract 

That positivity of all the Karle-Hauptman determinants 
and the positivity of the electron density in the unit cell 
are equivalent conditions is well known. A simple way of 
deriving this result is presented providing at the same time 
a relation between these determinants and the logarithm of 
the electron density. The relationship of this logarithm of 
the electron density to the entropy is also discussed. 

The Karle-Hauptman determinants are determinants of 
matrices involving the structure factors FH (Katie & Haupt- 
man 1950), 

FH = (1/V) J" p(r) exp (21rinr) dr. 

The structure factors are arranged into a matrix by writing 
H =  h~b~ +h2b2+h3b3, where b~ are the reciprocal-lattice 
vectors, and by grouping the three indices h t, h2, h3 into 
one, 'm',  by writing 

m = hi + N ( h 2 -  1) + N2(h3 - 1), (1) 

where ( N -  1) is the maximum value of h~ to be included 
in the matrix. A matrix D N of order N 3 with elements 

N N 3 D.,,, =F,,,_,,, m , n = l  . . . . .  

can now be formed. The Karle-Hauptman determinants 
up to order N 3 are all the principal minors of D N, including 
det (D N) and are positive if and only if p(r) > 0. 

Narayan & Nityananda (1982) showed that: 

lim ( l /N3)  l o g [ d e t ( D N ) ] ~ ( 1 / V ) ~ l o g p ( r ) d r .  (2) 
N~oo 

Both of these results will be recovered together with some 
other results. 
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For the derivation, the unit cell is considered to be divided 
into N 3 pixels, N divisions along each space direction, 
with integers j~, J2, J3 specifying a pixel. As shown in the 
Appendix there exist values/Sj such that 

N 
Fh = ( I / N  3) E Pj exp (27rijh/N), 

i 

with/Sj a sampled value of the electron density p(r) in pixel 
j. In the same way as for the structure factors, the indices 
j are arranged into one, K, by the same type of formula as 
(l). 

The numbers/~K are now considered to be the diagonal 
elements of a diagonal matrix B, i.e. B has elements B~K = 
p~8~,~, with 8~,~ the Kronecker delta. By a unitary trans- 
formation R the matrix B is transformed into D N as 
follows: Let the matrix R have elements R~,,-- 
( 1 / N  a/2) exp (2zrijh/N), with K related to j and n to h via 
(l), and let R* denote the Hermit;an conjugate of R, then 
it is easy to show that R is unitary, i.e. R*R = I, I the 
identity matrix, and that 

D N =  R*BR. 

It is here understood that in the matrix multiplication 
the summation over, say, K, related to h via (l), from 1 to 
N 3 is really a sum over h~, h2 and h3, each from l to N. It 
is obvious that p~ . . . . .  PN are the eigenvalues of the matrix 
O s. The results now follow by the following theorems 
(Wilkinson, 1965). 

(a) A necessary and sufficient condition for a Hermit;an 
matrix to be positive definite is that all its eigenvalues are 
positive. 

(b) A necessary and sufficient condition for a Hermit;an 
matrix to be positive definite is that all its principal minors 
are positive. 

In essence then, if p( r )>  0 then by (a) D N is positive 
definite and by (b) all the principal minors (Karle- 
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